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A separation of molecular motion in polymer melts into three components is proposed on the basis of 
local defects. The components are: (a) defect reorientation with environmental fluctuation, leading 
to a rapid anisotropic segment motion; (b) longitudinal chain diffusion (de Gennes' reptation), and 
(c) configurational deformations of the surrounding tube. Analytical formulas for the longitudinal 
and transverse relaxation rates are given. The relaxation behaviour shows model specific features, 
which allow the proposed model to be checked with experiments. 

INTRODUCTION 

Molecular motion in polymer melts has been studied by 
several authors ~'2 on the basis of fluctuating and diffusing 
local defects (rotational isomers of a few neighbouring seg- 
ments). According to such local defect models a special 
type of chain motion, called 'reptation '1, should occur. 
The purpose of this paper is to derive the n.m.r, relaxation 
behaviour, expected for the typical components of mole- 
cular motion which are related to local defect models. 
Thus, over all changes of the chain configurations will 
finally be described as the effect of thermally excitable 
elementary processes such as the hindered crankshaft rota- 
tion of segments. 

As pointed out in recent papers 3'4, there are two main 
components of molecular motion in polymers: firstly we 
have to deal with the anisotropic motion of the segments, 
leaving a non-zero value of the correlation function in the 
limit of infinite times. This means that (a) the dipolar 
broadening of n.m.r, lines cannot be averaged out by this 
component alone, even if the motion is very rapid, and 
that (b) the final low frequency plateau of the T1 disper- 
sion cannot be attained by this part of the polymer motion. 
The remaining contribution, we have to consider, consists of 
any type of overall chain motion such as longitudinal diffu- 
sion and configurational fluctuations. If rapid enough, these 
components will cause the final averaging out of the dipolar 
broadening. 

Previously, we have given an expression for the longitu- 
dinal relaxation time T1 due to the reptation mechanism a~s. 
In ref 6, the basic assumption that the reptation mechanism 
obeys the one-dimensional diffusion equation within the 
range of interest, has been discussed with the aid of a Monte 
Carlo simulation of the system. We now wish to extend the 
calculations to include configurational fluctuations of the 
'tube', within which the reptation mechanism is assumed. 
Furthermore, the transverse relaxation time T2 is drawn 
into consideration. Two different orientation correlation 
functions of the chains are assumed in order to obtain an 
idea of the influence of the type of these functions. 

DEFINITIONS 

The longitudinal relaxation rate in the case of dipolar inter- 
action between equal nuclei with spin 1/2 is given byT: 

1 9 
- 3'4h 2 ~ c ,  ~ [Ik(1/(WL)+/k(2)(COL)] (1) 

T 1 8 
l k 

In this formula, we have included the case of different 
phases of spins, denoted by the index l and weighted by 
the probability cl. Among the diverse phases a rapid mate- 
rial or spin diffusional exchange compared to the inner- 
phase relaxation times is assumed 8 according to the usually 
observed exponential relaxation curves. The sum over k 
comprises all nuclei interacting with a reference nucleus 
within a phase L For simplicity, the summations over k 
and l are omitted in the following sections. 

As to the transverse relaxation rate a situation of con- 
venient simplicity arises if the dipolar broadening is aver- 
aged out. Otherwise the definition of transverse relaxation 
times becomes problematic. Furthermore, spin diffusion 
does not affect the transverse relaxation behaviour. If the 
material exchange is slow compared to the transverse relaxa- 
tion processes, the relaxation curves should be composed 
of several exponential functions 9. One component corres- 
ponding to the phase l of nuclei relaxes asT: 

T21 - 1-6 ~ I~0'l + 15 I~I,](~L)+ 32 I~2'](~°L) 

k (2) 

Subsequently, we will again omit the indices k and l and 
the summation over k. 

The relaxation rates depend on the intensity functions 
I0) given as the Fourier transform of the correlation func- 
tion Gq) (0:  
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#)(co(o) = 

+ o o  

f G (i)(z) exp (ico(i)r)d~" 

- - 0 o  

(3) 

where i = 0, 1,2; 6o (0) = 0; co (1) = coL ; co(2) = 2coL (COL is 
the Larmor frequency). 

The correlation function can be expressed byT: 

c(')(,) = f f W(r', 01r", (4) 

where 

W(r', 0jr",  r) =p(r')WC(r ', r",  r) 

[p(r) represents the a priori probability of finding the spin- 
spin vector r; WC(r ', r", z) represents the conditional prob- 
ability of finding the spin-spin vector r" after a time z if 
there was an initial vector r'; W(r', 0lr", z) represents the 
probability of finding r' at a time 0, and r" after a time r; 
¢(±i)(r) represents the dipolar interaction function for the 
vector r as defined in ref 7 p 289.] 

In the case of a finite set of N discrete interaction states 
we obtain: 

G (i)(T) = (gp(i)(1) . . .  ~b(i)(N)) p(1) . 0 / 

: (s) 

Wc(1, 1, r) 

WciW, 1, 

Wc!I,N, z) ) ¢(-i)(1) \ 

where we have replaced the spin-spin vectors by interaction 
state numbers. 

If the initial interaction state is not correlated to the 
final states, which have been reached after the responsible 
process has occurred, then: 

G(i)(~ ") = (WC(r ' , r', z)l$(i)(r')12) r, (6) 

Finally, if this process is a Poisson process (i.e. if there 
are equal probabilities for the occurrence of the process at 
all time intervals of equal length) the correlation function 
becomes exponential: 

G (i)(r) = exp (-M/zc)(lc~(i)(r')12) (7) 

where rc is the correlation time. 
In the following, anisotropic motions are discussed. 

This means that the correlation function due to these 
motions does not fall to zero in the limit of long periods ~'. 
Consequently, we define the remainder of the correlation 
function in this limit G (i)(~) which is a measure of the 
anisotropy of the motion. The consequence of this re- 
mainder is a strong secular term concerning the transverse 
relaxation rate and, by circumstance, a remaining dipolar 
broadening. 

COMPONENTS OF MOLECULAR MOTION AS 
EXPECTED IN THE LOCAL DEFECT MODEL 

The conformation of the chains is considered to be highly 
distorted in the sense of rotational isomerism. An almost 
saturated concentration of defects is assumed (e.g. gtg-- 
sequences) and the following features of defects are empha- 
sized. (a) A reference segment within a defect can suffer a 
finite set of dipolar interaction states when the defect is dif- 
fusing across this segment. (b) Defects are generally able to 
diffuse in a series of steps or jurnps l°. (c) Defects contain 
stored length, i.e. a segment, which is passed by a defect, is 
displaced. 

The latter two points imply the possibility of chain dif- 
fusion according to the de Gennes reptation model 1. 

In order to define separable components of molecular 
motion in polymer melts, an arbitrarily chosen chain con- 
formation is considered as shown in Figure 1. Three par- 
tial motions are expected for the representative chain part 
1. 

(a) Rapid anisotropic segment rearrangement by defect 
steps. In other words, this type of motion can be described 
by the crankshaft rotation of neighbouring segments, i.e. 
simultaneous rotation around parallel main chain bonds. 
Because of the mutual hindrance of defects, this type of 
motion will be 'modulated' by a fluctuation of the environ- 
ment of a reference segment. 

(b) Longitudinal chain diffusion (reptation) as a conse- 
quence of defect diffusion. 

(c) Configurational fluctuation of the 'tube' surrounding 
the reference chain as a consequence of the reptation of  the 
neighbouring chains. This component is understood to 
comprise all motions not involved in (a) and (b). In this 
way, the configuration of the tube itself is time dependent. 

It is assumed that all three components are stochastically 
independent. The independence of components (a) and 
(b) from (c) is plausible because reptation and defect fluc- 
tuation are intrachain effects while the configurational 
fluctuation of the tube is an interchain effect. Compo- 
nents (a) and (b) are, strictly speaking, not stochastically 
independent: the reptation process is a consequence of de- 
fect fluctuation. In the time scale, however, in which rep- 
tation influences nan.r, relaxation, each segment has re- 
oriented many times. In other words, reptation is caused 
in this limit by the movement of a large ensemble of de- 
fects and is thus practically uncorrelated to the diffusion 
steps of a single defect. 

Refere~¢ segment / 
"\ A 

f 
Figure 1 Schematic representation of the considered components 
of molecular motion in a chain entangled by neighbouring chains: 
A, segment reorientation with environmental fluctuation; B, chain 
diffusion ('reptation't); C, configurational fluctuation of the sur- 
rounding 'tube' 
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The resulting correlation function has then a form: 

G q)(r) = A q)(r)b(r)c(r) (8) 

The letters A, b, c refer to the contributions defined above. 
b(r) and c(r) are reduced correlation functions because the 
dipolar interaction functions are included in A (i)(r). 

Consequently 

b(O) = c(O) = 1 

and 

b(oo) = c(o~) = 0 

in contrast to 

A q)(O) = fp(r')[~q)(r')12dr = (]¢q) 12) 

and 

A (i)(oo) = f f p(r')p(r")c~(i)(r')¢(-i)(r")dr' dr" = I(~(ibl 2 

REARRANGEMENT OF SEGMENTS 

In ref 3 the rearrangement of  segments in crystalline struc- 
tures due to kink diffusion was treated by a random walk 
formalism as a 'one particle problem', i.e. mutual hindrance 
of  kinks (environmental fluctuations) was neglected. As a 
consequence the diffusion effect was dominating. In poly- 
mer melts, however, defect concentrations are high and 
mutual hindrance of  defects plays an essential role. In this 
sense we are dealing with a many particle problem. 

There are two ways to treat such problems: either an 
approximate but analytical theory is used or a computer 
Monte Carlo simulation of  the segment motion is carried 
out. Two models concerning the first method have been 
treated as Markov chains in ref 3. The second method is 
described in detail in ref 6. 

Both methods lead to a correlation function o f  the type: 

A(i)(T) = ~ f4 i,j exp (-Irl/q) +A-L0 

/ 

(9) 

The constant quantity.,i ~0 characterizes the anisotropy of  
segment reorientation and dominates at long times compared 
with the fluctuation times r/. This process is 'broadened' 
because of  the environmental fluctuation, as indicated by 
the different exponentials in equation (9). 

The anisotropic remainder of  equation (9) finally decays 
to zero if there is any process changing the local chain 
orientation. Longitudinal chain diffusion around bends of  
the surrounding tube is the first possibility for the final loss 
of  correlation. 

CHAIN DIFFUSION 

We assume the validity of  the one-dimensional diffusion 
equation for the chains reptating on a curvilinear path. 
In ref 6 this assumption has been shown to be justified with- 
in the time scale relevant for the interpretation o f  T 1 dis- 
persion measurements. 

Molecular motion in lgolymer melts (I): R. Kimmich 

Following the treatment in ref 3, the chain diffusion 
factor in equation (8) is given by the ensemble averaged 
probability that a reference segment with a given initial 
orientation has the same orientation after a time r: 

x b(r)=~fp(x-)2fn(x,r)dxdE (10) 

0 0 

p(x-) is the probability that the nearest bend of  the surround- 
ing tube is at a distance x-from the reference segment. The 
factor 2 is necessary because there are final positions with 
the same tube orientation on both sides of  the reference 
segment, rt(x, z) is the probability that the reference seg- 
ment diffuses a distance x within a period r. 

Thus, fo x r~(x, r)dx is the probability that the reference 
segment is in the range 0 ~< x ~< x- after a period r. The ex- 
terior integration gives the average over all lengths x.. 

The solution of  the diffusion equation yields 1~: 

1 
r/(x, r) - 2(rrDlr)l/2 exp (-x2/4D1 r) (11) 

Generally we have to assume a time dependence of  the 
curvilinear diffusion coefficient D1, i.e. D l r  should be 
replaced by: 

rfOl( t)dt  

0 

where 

1 d(r 2) 
Dl ( t )  - 

2 dt 

In ref 6, however, it can be seen that at times, large com- 
pared to the correlation times of  defect sequences, an effec- 
tive and constant diffusion coefficient can be used to a 
good approximation. 

Thus we obtain: 

2 , r/(x, r)dx = erf ,4A---r, ll 2 (12) 

0 

The analytical form of  p(x)depends on the microstruc- 
ture. Two limiting cases will be considered in order to learn 
something about the influence of  p(x) on the final results: 

(a) The unidirectional distance-distribution is rectan- 
gular, i.e. all unidirectional parts of  the surrounding tube 
are of  equal length: 

1 
p ( x - )  = - -  for 0 < x~< 2l 

2l 

= 0 otherwise 

2l is the total length of  the unidirectional parts of  the sur- 
rounding tube. 

(b) The other, more plausible case is an exponential dis- 
tance-distribution of  the nearest tube bend, which means 
that there is the same probability at each segment that the 
surrounding tube changes its orientation: 
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1 
p(x) = ~- exp ( - x / l )  (14) 

2l is now the mean distance from one bend to the next. 
For case (a) we obtain: 

( ' )  b(r) ; erf (Dl~rl)l/2 

The result in case (b) is" 

exp (-12/D1M) - 1 
+ (15) 

(,-ere 
The characteristic time of this function is the medium diffu- 
sion time for a distance l: 

7"1 = 12/2D1 

CONFIGURATIONAL FLUCTUATION OF THE 
SURROUNDING 'TUBE' 

This component will be due to changes in the environmen- 
tal microstructure of a chain, allowing the chain to alter 
its conformation without diffusing in the longitudinal direc- 
tion. We assume that the conformational changes of this 
kind are of equal probability in all time intervals of equal 
length, i,e, we have a Poisson process. A justification of this 
assumption is the fact that the 'tube' is formed by many 
neighbouring chains, entangling the reference chain. The 

removement of any one of them via reptation can cause 
this type of fluctuation. 

The reduced correlation function is then: 

c(r) = exp (-Izl/r ,)  (17) 

where rr is the rotational correlation time of the local tube 
orientation, rr will be determined by lateral diffusion of 
chain parts. This implies that at high molecular weights the 
mean life time of chain entanglements will dominate. I fL 
is the mean chain length, we obtain12: 

rr o: L2/D1 (18) 

RESULTING RELAXATION FORMULAS 

In order to obtain the final relaxation formulas equations 
(1) and (2), we have to Fourier transform the correlation 
function equation (8): 

i(i) = : ( i )  {G (i)(r) } = 2 Re _~ (i)( G (i)(0} 

( 3 - q )  ( } signifies Fourier transformation with respect to 
frequency coq); f q )  { } corresponds to the Laplace trans- 
formation. It should be noted that the correlation function 
is even). The Laplace transform pairs, needed for equation 
(19), can be found in ref 13. The results are given in Table 1 
and Figure 2. 

The expected features of the frequency dependence of 
T1 (Figure 2) can be summarized as follows: (a) a low fre- 
quency plateau due to configurational fluctuation of the 
surrounding 'tube'; (b) a flat dispersion region at medium 
frequencies due to longitudinal chain diffusion; (c) the high 
frequency behaviour will be dominated by anisotropic seg- 

(19) 

Table 1 Intensity functions for both orientation correlation functions discussed in this paper. The n.m.r, relaxation rates are given by 
equations (1) and (2) 

Distance 
distribution, p Intensity functions, / (i) (~ (i)) 

Exponential, 
equation (14) 

Rectangular, 
equation (13) 

where: 

6j + 2a bi, jcos~i, j 

bi 4j. + 4a2b~;,a + 4abifi(Sjc°s¢i,i + w(i) sin ~/,/1 
J 

.. sin ~s ,nch i ,  j ]  ] 2~i'j 6 j - -exp  ( - - ~ c o s ~ , , j ) [ S j c o s  ( ~ - s i n ~ i , , ) - - o ~  (i) / b i "  " ~1 

j °,'-,, 

( O co, o,,)[co.,O,, 10,., 
exp a " " a ~ 7 sin }td 

+ 2a b.3. 
t,! 

b3j c o s  3~i, i 

1 1 1 w (i) 
6 j = 1 + _ _  ~ - - ( j = ~ 0 ) ;  ~i,j=~arctan SJ ; o~ ( i )= io :  L 

Tj r r r j  

1 60=__ ; bi, j=($7+~(i)2)l l4; i = 0 , 1 , 2  
T r 

1 D~I2  = 1 
a = 2-}- 2 ( 2 r l )  1/2 ; 

j = 0 . . . . .  n [ n ------ number of exponentials contributing to A (i)(r)] 
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Figure 2 T l and T 2 dispersion for a homogeneous phase of spin 
pairs with exponential orientation correlation function according to 
Table I. The curve parameter is the mean diffusion time r / for the 
correlation length I. In this plot, we have used for simplicity one 
exponential of equation (9) with the correlation time T s. Parameters 
other than indicated in the plots: 

9 3,41~2G(1)(0) = 2.7 X 109 sec--2; 

I (0):  /(1)(0): /(2)(0) = 6 : 1 : 4 ;  

A I , I  : A I , 0  = 103 

The time constants for segment fluctuation (Ts), longitudinal chain 
diffusion (r/) and the fluctuation of the surrounding tube (r r) are 
given by positions A, B and C, respectively: A, tOL'r r = 1 ; B, tOL'f I = 1; 
C, WLr  s = 1 

M o l e c u l a r  m o t i o n  in  p o l y m e r  m e l t s  (1 ) :  R. K i m m i c h  

ever, whether the components can be experimentally dis- 
tinguished. There are three reasons, why such a distinction 
can be expected to be possible. (A) The time scales, with- 
in which the processes occur, are very different, because 
configurational fluctuation of the surrounding tube is the 
consequence of reptation while reptation is the result of 
defect diffusion i.e. segment reorientation. The diffusion 
lengths, determining the time scales of reptational and con- 
figurational fluctuations, are also quite different, provided 
that the chains are longer than the entanglement length. 
(B) The relaxation time dispersions of the components sen- 
sitively depend on the type of the motions. (C) All compo- 
nents have quite different dependences on the molecular 
weight. In ref 6 we have shown that D1 = M - I .  Thus 
rl c~ D] -1 <x M and rr o: L2D] -1 ~ M 3 while the elementary 
process for all components, i.e. the defect motion, is inde- 
pendent of the chain length. 

The high frequency process (segment reorientation) is 
somewhat difficult to analyse because only rough estima- 
tions of the distribution of exponentials in equation (9) 
are possible. Therefore, T2 relaxation measurements have 
the advantage, essentially not to be influenced by this pro- 
cess. On the other hand, problems not arising in T 1 disper- 
sion appear. Any kind of heterogeneity in the sample will 
cause a multicomponent transverse relaxation if the material 
exchange between the diverse components is slow compared 
with T2. (This phenomenon often does not occur in T1 
relaxation because of the effect of spin diffusion.) If chain 
diffusion and configurational fluctuation of the surround- 
ing tube are slow compared to the inverse dipolar line width, a 
residual dipolar broadening will be left. Thus, the analy- 
sis of transverse relaxation curves becomes problematic. 

It will be valuable to consider all kinds of relaxation 
measurements for a comparison. There is a great deal of  
experimental material in the literature, requiring an exten- 
sive comparative study. This will be carried out in part 2 
of this series. Especially, the contribution of the diverse 
components, introduced in this paper, will be discussed 
in detail. 

ment reorientation finally leading to a high frequency limit 
T1 ~ 6OL 2. [In Figure 2, only one exponential of equation 
(9) has been used for simplicity. This process will, however, 
be 'broadened' in reality by environmental fluctuations.] 

Provided that reptation (b) is slow enough, the dispersion 
of T2 will be characterized by a single step (curves 1 to 3 
in Figure 2). It should particularly be noted that the high 
frequency process does not essentially influence the T2 dis- 
persion in this case, because the secular term is dominating. 

The comparison of the curves for exponential and rec- 
tangular distance distributions of nearest chain bends shows 
that the type of distribution causes no remarkable change 
of the dispersion curves. The deviations of both types of 
curves are less than 20%. Consequently we expect that the 
analysis of experimental relaxation dispersion data does not 
essentially depend on the chosen distribution. 

DISCUSSION 

The suggested separation of molecular motion into three 
components is quite general. The question remains, how- 
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Figure A I The indicated processes refer to the text 
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APPENDIX 

Exemplary process of  defect diffusion across gauche bends 

The reptation model requires defects which are able to 
diffuse along the chain. The question is now whether such 
defects can cross gauche bends of the main chain orienta- 
tion. In polymer melts, all possible crankshaft motions of 
the main chain are excited to a very high degree. So, com- 
binations of such processes lead to the possibility that de- 
fect states are effectively transported across gauche bends 
of the chain. 

In order to demonstrate this, one example of such a 
process is considered. This process is separated into three 
intermediate steps which should occur practically simul- 
taneously (Figure A1). The first step is a crankshaft motion, 
shifting the gauche position at point B together with the 
right hand part of  the chain to the right (1 ~ 2). The dis- 
placement of the right-hand chain part can be removed by 
annihilating the existing double kink and creating a new 
double kink on the left-hand side of the gauche position 
(2 -+ 3 -+ 4). 

The net effect of the total process is that a double kink 
or two bond lengths have effectively been transported 
across the gauche bend from the right to the left. 
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